[

Control abstraction for Greedy Method

UNIT-II
Greedy Method

Algorithm GreedyMethod (a, n)

{

// ais an array of n inputs
Solution: =Q;
fori: =o ton do
{
s: = select (a);
if (feasible (Solution, s)) then
{

}
else
reject (); // if solution is not feasible reject it.
}

return solution;

Solution: = union (Solution, s);

02-03-2017

© Suppose that a problem can be solved by a sequence
of decisions. The greedy method has that each
decision is locally optimal. These locally optimal
solutions will finally add up to a globally optimal
solution.

F.

hat is Greedy Approach?

* Only a few optimization problems can be solved by
the greedy method.

L ]

1. A selection of solution from the given input
domain is performed, i.e. s:= select(a).

2. The feasibility of the solution is performed, by
using feasible ‘(solution, s)’ and then all feasible
solutions are obtained.

" Three important activities

From the set of feasible solutions, the particular
solution that minimizes or maximizes the given
objection function is obtained. Such a solution is
called optimal solution.

L |

W




n)ifferentiate Greedy and Divide-and-Conquer ‘

GREEDY APPROACH

DIVIDE AND CONQUER

1.Many decisions and sequences areguar
anteed and all the overlapping subinstan
cesare considered.

1.Divide the given problem into many su
bproblems.Find the individual solutions
andcombine them to get the solution for t
hemain problem

2. Follows Bottom-up technique

2. Follows top down technique

3.Split the input at every possible points
rather
than at a particular point

3.Split the input only at specific points (
midpoint), each problem is independent.

4. Sub problems
on the main
Problem

are dependent

4. Sub problems are independent
on the main
Problem

5. Time taken by this approach is not
that much efficient when compared with
DAC.

5. Time taken by this approach efficient
when compared with GA.

6.Space requirement is less when
Ncomgared DAC approach.

when compared GA approach.

'

Contd ...

Example:

index 1 2

JOB j1 j2

DEADLINE | o

PROFIT 60 | 100

20 40 | 20

index 1 2

JoB j2 i1

DEADLINE |1 2

‘ PROFIT 100 60

6.Space requirement is very much high I

02-03-2017

'App|ication --JOB SEQUENCING'WITH DEADLINES™ ‘
~ Procedure

* In this problem we have n jobs ji, j2, ... jn, each has an
associated their deadlines d1, d2, ... dn and their profits

PL P2, ... pn.

* Profit will only be awarded or earned if the job is
completed on or before the deadline.

* We assume that each job takes unit time to complete.

* The objective is to earn maximum profit when only
one job can be scheduled or processed at any given

ktime. ‘

‘t}ntd — a

Initially =
time slot |1 P 3
status EMPTY EMPTY EMPTY
Optimal Solution
time slot |1 > 3
status J2 Jit I3

‘ Maximum Profit: 100+60+20 = 180 ‘




B

L

Algorithm

it JS(int d[], int j[]. int n)
// d[1]>=1, 1<=i<=n are the deadlines, n>=1. The jobs
J/ are ordered such that p[l]%p[2]>— >=p[n]. J[i]
// 1s the ith job in the optimal solution, 1<=i<=k.
/! Also, at term]_uatlou d[J[1]]== d[J[1+1]] 1<=1<k.
{

d[0] = J[0] = 0; // Initialize.

1] = 1 /" Includejob 1.

int k=

for (mt i=2; i<=n; i++) {

//Consider ]obs in nonincreasing
// order of p[1]. Find, osmon for
/1 and chec! feasnbl ity of insertion.

l:vlﬁfl; (@[] = d[i]) && (AIE]] = 1)) 1
if ((d[J[x]] <= d[lg && (d[i] > 1) {

Insert 1 mto J|
for (int q=k: q>=(r+1): q--) J[q+1] =
Jr+1] =1; kt+;

Jql:

}retuln k):

L

ITEM WEIGHT VALUE
il 6 6
i2 10 2
i3 3 1
i4 5 8
i5 1 3
i6 3 5
* Maximum Profit (20)
* Minimum Weight (17)

* Maximum Profit - Weight ratio (22.333336)

M=16

|

02-03-2017

[ IR -

Application - KNAPSACK PROBLEM

* In this problem we have a Knapsack that has a weight
limit M

* There are items i1, i2, ..., in each having weight w1, w2,
... wn and some benefit (value or profit) associated with
it p1, p2, ..., pn

* Our objective is to maximise the benefit such that the
total weight inside the knapsack is at most M, and we
are also allowed to take an item in fractional part.

max 3" oy,
o=i<n
I
>owx, =M
o=i<n
O0<x <=1
P2,=0w,=0,0<i<n

L

'I:\Igorithm — =

void GreedyKnapsack(float m, int n)

// p[1:n] and w[1:n] contain the profits and weights
// respectively of the n objects ordered such that

/1 pli}/w[i] >= p[i+1)/w(i+1]. m is the knapsack

// size and X[1:n] is the solution vector.

for (int i=1; i<=n; i++) x[i] = 0.0: // Initialize x.
float U=m;
for (i=1; i<=n; i++) {
if (w[i] > U) break;
x[i] = 1.0;
U -=wl[i]:

) i)f (i<=n) x[i] = UWIi];




02-03-2017

— ! KKruskaI’s Algorithm- = a

Application — Minimum Spanning Tree

+ A spanning tree is a subset of Graph G, which has all Step 1 - Remove all loops and Parallel Edges.
the vertices covered with minimum possible number Step 2 - Arrange all edges in their increasing order of
of edges. Hence, a spanning tree does not have cycles weight.
and it cannot be disconnected. Step 3 - Add the edge which has the least weightage iff it
Note 1: Every connected and undirected Graph G has does not form cycle.
at least one spanning tree.
Note 2: A disconnected graph does not have any Ex:

spanning tree.

* A complete undirected graph can have
maximum n™?2 number of spanning trees, where n is
the number of nodes.

L a4 b

' = ’ ' . 1 Algorithm Kruskal( E, cost, n,1)
L — Algorlthm 2 /[ Eis the set of edges in G. G has n vertices. cost[u,v] is the
) 1 1 - 3 /[ cost of edge {u,v). # is the set of edges in the minimum-cost
) 2 4 2y - 2 -? /[ spanning tree. The final cost is returned.
10, - 10, 2
/ i G Construct a heap out of the edge costs using Heapify;
6 7 3 6, (7) 3 6 7 3 7 for i :=1to n do pareni[i] == —1;
) / 8 // Each vertex is in a different set.
3 e 5 A2 ] i 2= 0; mincost := 0.0
R / 10 while ({i <n~1) and (heap not empty)) do
4 4 (4 11
12 Delete a minimum cost edge (w, v} from the heap
@ Ll (© 13 and reheapify using Adjust;
14 j 1= Find(u); k := Find(v);
[l I 15 if (j # k) then
P / 16
1o/ |4."'2I 10/ 17 { i 1;
vy . ,{" 18 i, 1] == g #[i, 2] := w3
6 7 3 6) 19 mincost := mincost + cost[u, v];
' 20 Union{j, k)3
N2 12 2 1
5 5 n o}
4 ) 22 74 23 if (i #n — 1) then write ["No spanning tree”);
‘ (d © @ ‘ ‘ 351 } else return mincost;
—




02-03-2017

mPrim’s Algorithm — —= ! ' — — a

* Prim's algorithm, in contrast with Kruskal's : 3z = 7
algorithm, treats the nodes as a single tree and keeps 9 ' A ')
on adding new nodes to the spanning tree from the O )] & 3 ® @ a
given graph. s 255 25

+ Step1- Remove all loops and parallel edges. = = 23 a

+ Step 2 - Choose any arbitrary node as root node. @ . ©

* Step 3 - Check outgoing edges and select the one
with less cost. ~ '

&)
&
S

1 A!gurithm Pfim(E‘(.ﬂht,ﬂ. t) ' _ a
2 /[ E is the set of edges in G. cost[1:n,1:n] is the cost E— ==
5 3 7/ adjacency matrix of an n vertex graph such that cost[r, ,] is - : _c

Algorlthm 4 /[ either a positive real number or oo if no edge (i, j) e Appllcatlon SIngle source ShorteSt path
5 // A minimum spanning tree is computed and stored as a -:m of
6 /[ edges in the array ¢[1:n — 1 1: 2] ()i, 1),2[¢,2]) is an edge in . . .
777 the minimuin-cost spanming tree, The fual cost is returned, * For a given source node in the graph, the algorithm
8
9 Let (k.1) be an edge of minimum cost in E; ﬁl’ldS the shortest path bereen that nOde and every
1 e 'f'[“l-*’hl!]“'jf_l; B} other. It also used for finding the shortest paths from
12 for i == 1 to n do // Initialize near. a single node to a single destination node by
13 if (cost[i,l] < cost[i,k]) then near[i] := I : . h
14 else nearli] = ks stopping the algorithm once the shortest path to the
15 k] = 1] = El . . 9
B pearlh] S pearll destination node has been determined.
17 { j,t‘ Find n — 2 dddmona,l edges for ¢,
18 Let j be an index such tlml near(j] # 0 and
19 rrm‘[] mnr[}] is minimun;
20
21
22 ;
23 for k:=1to n do // Update near| |.
24 if ((near[k] # 0) and ((ast\k near(k|] > cost|k, j]))
25 then nrrar[k

}
27 return mincost;
2% 3}




Algorithm

1 Algorithm ShortestPaths(v, cost, dist.n)

2 /[ dist[j]. 1 <j < n. is set to the length of the shortest

3 // path from vertex v to vertex j in a digraph G with n
4 /[ vertices. disi[v] is set to zero. G is represented by its
5 [/ cost adjacency matrix cost[l : n, 1 :n

6

7 for i := 1 to n do

8 { // Tnitialize S.

9 S[i] := false; dist[i] := cosi[v,i];

10

11 Slv] := true; dist[v] := 0.0; // Put v in §.

12 for num :=2ton -1 do

13

14 // Determine n — 1 paths from v.

15 Choose u from among those vertices not

16 in § such that dist[u] is minimum;

17 Slu] := truey // Put v in S.

18 for (each w adjacent to u with S[w] = false) do
19 // Update distances.

20 if (distfw] > dist[u] + cost[u, w])) then

21 dist[w] := dist[u] + cost[u. w];

22

2}

]

E'Q— .‘ 1\ \2
F -co N _\‘
E3 F

Soutce— A

02-03-2017

45
Path Length
1) 1,4 10
2) 1,4,5 25
3) 1,4,5,2 45
4) 1,3 45
(a) Graph (b) Shortest paths from 1

.

L

'Kruskal's vs Prim’s

e Prim’s algorithm initializes with a node, whereas
Kruskal'’s algorithm initiates with an edge.

° Prim’s algorithms span from one node to another
while Kruskal’s algorithm select the edges in a way
that the position of the edge is not based on the
last step.

° In prim’s algorithm, graph must be a connected
graph while the Kruskal's can function on
disconnected graphs too.

° Prim’s algorithm has a time complexity of O(V?),
and Kruskal’s time complexity is O(ElogV).

|




